SUMMATIVE ASSESSMENT - II - 2016-2017
 CLASS-X - MATHS - PAPER-I
 Part - A \& B
 KEY

Class: \mathbf{X}
Part - A
Marks : 60

Section - I (Each question carries 1 mark)

1. $\mathrm{A}=\{\mathrm{x}: \mathrm{x}$ is a prime factor of 30$\}=\{2,3,5\}$
$B=\{x: x$ is a prime below of 20$\}=\{2,3,5,7,11,13,17,19\}$
$\} \frac{1}{2} m$
(i) $\mathrm{A} \cup \mathrm{B}=\{2,3,5\} \cup\{2,3,5,7,11,13,17,19\}$
$=\{2,3,5,7,11,13,17,19\}$
= B
(ii) $\mathrm{A} \cap \mathrm{B}=\{2,3,5\} \cap\{2,3,5,7,11,13,17,19\}$
$=\{2,3,5\}$
$=\mathrm{A}$
2. Given Q.E $3 x^{2}-2 x+\frac{1}{3}=0$

Here $\mathrm{a}=3, \mathrm{~b}=-2, \mathrm{c}=\frac{1}{3}$

$$
\begin{aligned}
\Delta & =\mathrm{b}^{2}-4 \mathrm{ac} \\
& \left.=(-2)^{2}-4(3)\left(\frac{1}{3}\right)\right\} \frac{1}{2} \\
& =4-4 \\
& =0 \quad \therefore \text { Roots are real and equal }-\frac{1}{2}
\end{aligned}
$$

3. If $\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$ are a pair of linear equations and if $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$ then the system of linear equations are in 'consistent' system.

1 m
4.

Name: A toytop
(or) For any such figure Figure $-\frac{1}{2}$

$$
\text { Name } \left.-\frac{1}{2}\right\} 1 \mathrm{~m}
$$

Section - II (Each question carries 2 marks)

5. $\quad 99 x+101 y=499 \times 99$

$$
\left.\begin{array}{l}
\frac{101 \mathrm{x}+99 \mathrm{y}=501 \times 101}{99^{2} x+(101)(99) \mathrm{y}=499 \times 99} \\
101^{2} x+(99)(101) \mathrm{y}=501 \times 101
\end{array}\right\} \frac{1}{2}
$$

Sub

$$
\begin{aligned}
& \left(99^{2}-101^{2}\right) \mathrm{x}=499 \times 99-501 \times 101 \ldots \ldots \ldots \cdot \frac{1}{2} \\
& (99+101)(99-101) \mathrm{x}=(500-1)(100-1)-(500+1)(100+1) \\
& \left.\therefore \mathrm{x}=\frac{50000-600+1-50000-600-1}{200 \times(-2)}\right\} \frac{1}{2} \\
& \quad=\frac{1200}{400} \\
& \quad=3
\end{aligned}
$$

$$
99 x+101 y=499
$$

$$
99(3)+101 y=499
$$

$$
\left.101 y=499-297 \Rightarrow y=\frac{202}{101}=2\right\} \frac{1}{2}
$$

$\therefore \mathrm{x}=3, \mathrm{y}=2$ is the solution.
6. $x^{2}-5 x+6=0$
$\left.\begin{array}{l}x^{2}-5 x=-6 \\ x^{2}-2(x)\left(\frac{5}{2}\right)=-6\end{array}\right\} \frac{1}{2}$
Add $\left(\frac{5}{2}\right)^{2}$ on both sides to make LHS as a perfect square. $\} \frac{1}{2}$
$\left.\begin{array}{l}x^{2}-2 x\left(\frac{5}{2}\right)+\left(\frac{5}{2}\right)^{2}=-6+\left(\frac{5}{2}\right)^{2} \\ \left(x-\frac{5}{2}\right)^{2}=\frac{1}{4}\end{array}\right\} \frac{1}{2}$
$\mathrm{x}-\frac{5}{2}=\sqrt{\frac{1}{4}}= \pm \frac{1}{2} \Rightarrow \mathrm{x}-\frac{5}{2}=\frac{1}{2}$ or $\mathrm{x}-\frac{5}{2}=-\frac{1}{2}$
$\therefore \mathrm{x}=\{3,2\}$
7.

Radius of the sphere $=6 \sqrt{3} \mathrm{~cm}$ $\left.\begin{array}{l}\text { when largest possible 'cube' is carvedout of sphere, } \\ \text { then diagonal of the cube }=\text { diameter of sphere }\end{array}\right\} \frac{1}{2}$
$\left.\begin{array}{l}\therefore \mathrm{d}=2(6 \sqrt{3}) \\ \sqrt{3} \mathrm{~S}=12 \sqrt{3}\end{array}\right\} \frac{1}{2}$
$\mathrm{S}=12$
\therefore Surface area of cube $=6 \mathrm{~S}^{2}$

$$
\left.\begin{array}{l}
=6 \mathrm{~S}^{2} \\
=6(12)^{2}=864 \mathrm{~cm}^{2}
\end{array}\right\} 1 \mathrm{~cm}
$$

2 m
8. Assume that $\frac{1}{3 \sqrt{2}}$ is rational

Let $\frac{1}{3 \sqrt{2}}=\frac{p}{q}(\mathrm{q} \neq 0, \mathrm{p}, \mathrm{q}$ are co-primes $\left.)\right\} \frac{1}{2}$
$3 \sqrt{2} p=\mathrm{q}$
$\left.\begin{array}{l}\sqrt{2}=\frac{q}{3 p}\end{array}\right\} \frac{1}{2}$
Here LHS is an irrational and $\frac{q}{3 p}$ is rational. $\} \frac{1}{2}$
This is a contridiction
\therefore Our assumption is false.
$\therefore \frac{1}{3 \sqrt{2}}$ is irrational. $\} \frac{1}{2}$
$\left.\begin{array}{l}\text { 9. Let no. of honey bees }=x \\ \text { no. of flowers }=\mathrm{y}\end{array}\right\} \frac{1}{2}$
(i) Two honey bees sit on each flower, one bee was leftout

$$
\begin{align*}
& \therefore x=2 y+1 \tag{1}\\
& \Rightarrow x-2 y=1
\end{align*}
$$

(ii) Three bees sit on each flower, no flower is left

$$
\therefore \mathrm{y}=\frac{x}{3}+0
$$

(ii) Thee bees sit

$$
\text { (2) }\} \frac{1}{2}
$$

Section - III (Each question carries 4 marks)

10 (a) Given Q.E $x^{2}-(m+1) x+6=0$

$$
\begin{gather*}
x=3 \Rightarrow(3)^{2}-(m+1) 3+6=0 \\
9-(3 m+3)+6=0 \tag{1}\\
-3 m+12=0 \tag{1}\\
m=4
\end{gather*}
$$

Now the equation become

$$
\begin{aligned}
& x^{2}-(4+1) x+6=0 \\
& x^{2}-5 x+6=0 \\
& \quad(x-2)(x-3)=0 \Rightarrow x=\{2,3\}
\end{aligned}
$$

\therefore Other root $=2$
(b)

Diameter of sphere $=28 \mathrm{~cm}, \quad$ Diameter of cone $=4 \frac{2}{3} \mathrm{~cm}$ $\left.\mathrm{r}=\frac{28}{2}=14 \mathrm{~cm} \ldots \ldots \ldots .(1)\right\} 1 \quad$ radius $\left.=\frac{14}{3} \times \frac{1}{2}=\frac{7}{3} \mathrm{~cm}\right\}^{1}$ height $=3 \mathrm{~cm}$
ATP
The sphere is melted and cost into some (n) cones
$\therefore \mathrm{n} \times$ volume of each cone $=$ volume of sphere $\} \frac{1}{2}$

$$
\begin{aligned}
& \mathrm{n} \times \frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h}=\frac{4}{3} \pi \mathrm{r}^{3} \\
& \mathrm{n} \times \frac{1}{3} \times \frac{22}{7} \times \frac{7}{3} \times \frac{7}{3} \times 3=\frac{2}{3} \times \frac{22}{7} \times 14 \times 14 \times 14 \\
& \therefore \mathrm{n}=672\} \frac{1}{2}
\end{aligned}
$$

(a) $\quad x^{2}+y^{2}=6 x y$

Add ' $2 x y$ ' on both sides

$$
\left.\begin{array}{l}
x^{2}+y^{2}+2 x y=6 x y+2 x y \\
(x+y)^{2}=8 x y
\end{array}\right\} 1
$$

Apply 'log' on both sides

$$
\begin{aligned}
& \log (x+y)^{2}=\log 8 x y \quad 1 \\
& \left.\begin{array}{rl}
2 \log (x+y) & =\log 8+\log x+\log y \\
& =\log 2^{3}+\log x+\log y
\end{array}\right\} 1 \quad[\because \log x y=\log x+\log y] \\
& =\log 2^{3}+\log x+\log y \\
& \left.=3 \log ^{2}+\log x+\log y\right\} 1\left[\because \log x^{m}=m \log x\right]
\end{aligned}
$$

(b) Let ' a ' be a positive integer
$\left.\begin{array}{r}\text { Take } \mathrm{b}=3 \text {, Acc to Euclids division Lemma } \\ \mathrm{a}=\mathrm{bq}+\mathrm{r}, \mathrm{r}=0,1,2(\because 0 \leq \mathrm{r}<\mathrm{b})\end{array}\right\} \frac{1}{2}$

$$
\left.\begin{array}{rl}
\Rightarrow \mathrm{a} & =3 \mathrm{q} \\
& =3 \mathrm{q}+1 \\
& =3 q+2
\end{array}\right\} \frac{1}{2}
$$

(i) If $\mathrm{a}=3 \mathrm{q}$

$$
\begin{aligned}
\Rightarrow \mathrm{a}^{3} & =(3 q)^{3} \\
& =27 \mathrm{a}^{3} \\
& =9\left(3 q^{3}\right)=9 \mathrm{~m}
\end{aligned}
$$

(ii) $\mathrm{a}=3 \mathrm{q}+1$

$$
\Rightarrow \mathrm{a}^{3}=(3 \mathrm{q}+1)^{3}
$$

$$
\left.=27 q^{3}+27 q^{2}+9 q+1\right\} 1
$$

$$
=9\left(3 q^{3}+3 q^{2}+q\right)+1
$$

$$
=9 m+1
$$

(iii) If $\mathrm{a}=3 \mathrm{q}+2$

$$
\left.\begin{array}{rl}
\Rightarrow a^{3} & =(3 q+2)^{3} \\
& =27 q^{3}+54 q^{2}+36 q+8 \\
& =9\left(3 q^{3}+6 q^{3}+4 q\right)+8 \\
& =9 m+8
\end{array}\right\} 1
$$

For any positive integer, the cube is always in the form of $9 \mathrm{~m}, 9 \mathrm{~m}+1$ or $9 \mathrm{~m}+8$

Hence proved

12 (a) Let the speed of the car $=x \mathrm{kmph}$
distance travelled $\quad=36 \mathrm{~km}$
\therefore time taken $=\frac{36}{x}$
If speed is increased by 10 kmph , then $\} 1$

$$
\begin{equation*}
\text { time taken }=\frac{36}{x+10} \tag{2}
\end{equation*}
$$

ATP

$$
\begin{align*}
& \begin{aligned}
& \text { Difference in time taken }=18 \mathrm{~min} \\
&=\frac{18}{60} \mathrm{hr} \\
& \therefore \quad \frac{36}{x}-\frac{36}{x+10}=\frac{18}{60} \\
& \text { Simplifying } \quad \mathrm{x}^{2}+10 \mathrm{x}-1200=0 \\
&\text { Solving } \left.\quad \begin{array}{l}
(\mathrm{x}+40)(\mathrm{x}-30)=0 \\
\quad \Rightarrow \mathrm{x}=\{-40,30\}
\end{array}\right\} 1
\end{aligned}
\end{align*}
$$

Speed of the car $=30 \mathrm{kmph}$

Length of the capsule $=14 \mathrm{~mm}$
Width of the capsule $=5 \mathrm{~mm}$
The capsule is the combination of two hemispheres and a cylinder
\therefore radius of hemisphere $=\frac{d}{2}=\frac{5}{2} \mathrm{~mm}$
\therefore Volume of two hemispherical ends $=2 \times \frac{2}{3} \pi \mathrm{r}^{3}$

$$
\begin{aligned}
& \left.=2 \times \frac{2}{3} \times \frac{22}{7} \times \frac{5}{2} \times \frac{5}{2} \times \frac{5}{2}\right\} 1 \\
& =\frac{1375}{21} \mathrm{~mm}^{3}
\end{aligned}
$$

Volume of cylinder $=\pi r^{2} h$

$$
\begin{aligned}
& \left.=\frac{22}{7} \times \frac{5}{2} \times \frac{5}{2} \times\left(14-2\left(\frac{5}{2}\right)\right)\right\} 1 \\
& =\frac{22}{7} \times \frac{5}{2} \times \frac{5}{2} \times 9 \mathrm{~m}^{3} \mathrm{~m}=\frac{2475}{14} \mathrm{~mm}^{3}
\end{aligned}
$$

\therefore Total volume of capsule

$$
\left.\begin{array}{l}
=\text { Volume of two hemispherical ends }+ \text { Volume of cylinder } \\
=\frac{1375}{21}+\frac{2475}{14}
\end{array}\right\} 10101 \mathrm{~m}
$$

13 (a) For writing the table for $\left.\begin{array}{c}p(x)=x^{2}-4 x-5\end{array}\right\} 1 \frac{1}{2}$

x	-3	-2	-1	0	1	2	3	4
$\mathrm{p}(\mathrm{x})=\mathrm{x}^{2}-4 \mathrm{x}-5$	$(-3)^{2}-4(-3)-5$	$(-2)^{2}-4(-2)-5$	$(-1)^{2}-4(-1)-5$	$0^{2}-4(0)-5$	$1^{2}-4(1)-5$	$2^{2}-4(2)-5$	$3^{2}-4(3)-5$	$4^{2}-4(4)-5$
y	16	7	0	-5	-8	-9	-8	-5
(x, y)	$(-3,16)$	$(-2,7)$	$(-1,0)$	$(0,5)$	$(1,-8)$	$(2,-9)$	$(3,-8)$	$(4,-5)$

Scale $=X$-axis $=1 \mathrm{~cm}=1$ unit
Y-axis $=1 \mathrm{~cm}=2$ unit

For Graph :

Check: $P(x)=x^{2}-4 x-5$

$$
\left.\begin{array}{rl}
\mathrm{P}(-1) & =(-1)^{2}-4(-1)-5 \\
& =1+4-5 \\
& =0 \\
\mathrm{P}(5) & =(5)^{2}-4(5)-5 \\
& =25-20-5 \\
& =0
\end{array}\right\} 1 \frac{1}{2}
$$

Solution : 1) The Graph of the polyminal is a curve
2) It cuts x-axis at $(-1,0)$ and $(5,0)$
3) Zeroes $=\{-1,5\}$

13 (b) For writing tables for equations
(i) $2 x-y=5$

x	0	$5 / 2$	2
y	-5	0	-1
(x, y)	$(0,-5)$	$(5 / 2,0)$	$(2,-1)$

Scale $=X$-axis $=1 \mathrm{~cm}=1$ unit
Y-axis $=1 \mathrm{~cm}=2$ unit
(ii) $4 x-2 y=12$

x	0	3	-2
y	-6	0	-10
(x, y)	$(0,-6)$	$(3,0)$	$(-2,-10)$

Solution : 1) The Graph of pair of linear equations is a pair of parallel lines. $\quad\} \frac{1}{2}$
2) Hence the Equations are in inconsistent system.

