SUMMATIVE ASSESSMENT - II - 2016 - 2017

CLASS-X - MATHS - PAPER-I

Part - A & B KEY Class : X Part - A Marks : 60

Section - I (Each question carries 1 mark)

1.
$$A = \{x : x \text{ is a prime factor of } 30\} = \{2, 3, 5\}$$

 $B = \{x : x \text{ is a prime below of } 20\} = \{2, 3, 5, 7, 11, 13, 17, 19\}$
(i) $A \cup B = \{2, 3, 5\} \cup \{2, 3, 5, 7, 11, 13, 17, 19\}$
 $= \{2, 3, 5, 7, 11, 13, 17, 19\}$
 $= B$
(ii) $A \cap B = \{2, 3, 5\} \cap \{2, 3, 5, 7, 11, 13, 17, 19\}$
 $= \{2, 3, 5\}$
 $= A$
1m
2. Given Q.E $3x^2 - 2x + \frac{1}{3} = 0$
Here $a = 3, b = -2, c = \frac{1}{3}$
 $\Delta = b^2 - 4ac$
 $= (-2)^2 - 4(3)\left(\frac{1}{3}\right) = \frac{1}{2}$
 $= 4 - 4$
 $= 0$ \therefore Roots are real and equal $-\frac{1}{2}$
1m

3. If $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are a pair of linear equations and if $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ then the system of linear equations are in 'consistent' system. Im

4.
$$(or)$$
 For any such figure Figure $-\frac{1}{2}$ $1m$
Name : A toytop $Name -\frac{1}{2}$

Section - II (Each question carries 2 marks)

5.
$$99x + 101y = 499 \times 99$$

$$101x + 99y = 501 \times 101$$

$$99^{2}x + (101)(99) y = 499 \times 99$$

$$101^{2}x + (99)(101) y = 501 \times 101$$

$$99^{2} - 101^{2} x = 499 \times 99 - 501 \times 101 \dots \frac{1}{2}$$

$$(99^{2} - 101^{2}) x = 499 \times 99 - 501 \times 101 \dots \frac{1}{2}$$

$$(99 + 101)(99 - 101) x = (500 - 1)(100 - 1) - (500 + 1)(100 + 1)$$

$$\therefore x = \frac{50000 - 600 + 1 - 50000 - 600 - 1}{200 \times (-2)} \quad \frac{1}{2}$$

$$= \frac{1200}{400}$$

$$= 3$$

$$99x + 101y = 499$$

$$99(3) + 101y = 499$$

$$99(3) + 101y = 499$$

$$101y = 499 - 297 \implies y = \frac{202}{101} = 2$$

$$\frac{1}{2}$$

$$\therefore x = 3, y = 2 \text{ is the solution.}$$

$$\therefore$$
 x = 3, y = 2 is the solution.

6.
$$x^{2}-5x+6=0$$

$$x^{2}-5x=-6$$

$$x^{2}-2(x)\left(\frac{5}{2}\right)=-6$$

$$\frac{1}{2}$$
Add $\left(\frac{5}{2}\right)^{2}$ on both sides to make LHS as a perfect square. $\left\{\frac{1}{2}\right\}^{2}$

$$x^{2}-2x\left(\frac{5}{2}\right)+\left(\frac{5}{2}\right)^{2}=-6+\left(\frac{5}{2}\right)^{2}$$

$$\left\{x-\frac{5}{2}\right\}^{2}=\frac{1}{4}$$

$$x-\frac{5}{2}=\sqrt{\frac{1}{4}}=\pm\frac{1}{2} \implies x-\frac{5}{2}=\frac{1}{2} \text{ or } x-\frac{5}{2}=-\frac{1}{2}$$

$$\left\{\frac{1}{2}\right\}$$

7. Radius of the sphere
$$= 6\sqrt{3}$$
 cm
when largest possible 'cube' is carvedout of sphere, $\left[\right] \frac{1}{2}$
is d = $2(6\sqrt{3})$
 $\sqrt{3}S = 12\sqrt{3}$
 $S = 12$
 \therefore Surface area of cube = $6S^2$
 $= 6(12)^2 = 864 \text{ cm}^2$ $\left[1 \text{ cm} \right]$ 2m
8. Assume that $\frac{1}{3\sqrt{2}}$ is rational
Let $\frac{1}{3\sqrt{2}} = \frac{p}{q}$ (q $\neq 0$, p, q are co-primes) $\left[\frac{1}{2} \right]$
 $3\sqrt{2}p = q$
 $\sqrt{2} = \frac{q}{3p}$ $\left[\frac{1}{2} \right]$
Here LHS is an irrational and $\frac{q}{3p}$ is rational. $\left[\frac{1}{2} \right]$
This is a contridiction
 \therefore Our assumption is false.
 $\therefore \frac{1}{3\sqrt{2}}$ is irrational. $\left[\frac{1}{2} \right]$
9. Let no. of honey bees = x
no. of flowers = y $\left[\frac{1}{2} \right]$
(i) Two honey bees sit on each flower, one bee was leftout
 $\therefore x = 2y + 1$
 $\Rightarrow x - 2y = 1$ (1) $\left[\frac{1}{2} \right]$
(ii) Three bees sit on each flower, no flower is left
 $\therefore y = \frac{x}{3} + 0$
 $\Rightarrow x - 3y = 0$ (2) $\left[\frac{1}{2} \right]$

Section - III (Each question carries 4 marks)

10 (a) Given Q.E
$$x^{2} - (m+1)x + 6 = 0$$

 $x = 3 \Rightarrow (3)^{2} - (m+1)3 + 6 = 0$
 $9 - (3m+3) + 6 = 0$
 $m = 4$
Now the equation become
 $x^{2} - (4+1)x + 6 = 0$
 $x^{2} - 5x + 6 = 0$
 $(x-2)(x-3) = 0 \Rightarrow x = \{2,3\}$
 \therefore Other root = 2
Diameter of sphere = 28 cm. Diameter of cone = $4\frac{2}{3}$ cm
 $r = \frac{28}{2} = 14$ cm(1)
1 radius = $\frac{14}{3} \times \frac{1}{2} = \frac{7}{3}$ cm
height = 3cm
ATP
The sphere is melted and cost into some (n) cones
 $\therefore n \times volume of each cone = volume of sphere
 $n \times \frac{1}{3} \pi r^{2}h = \frac{4}{3} \pi r^{3}$
 $n \times \frac{1}{3} \times \frac{22}{7} \times \frac{7}{3} \times \frac{7}{3} \times 3 = \frac{2}{3} \times \frac{22}{7} \times 14 \times 14 \times 14$
 $\therefore n = 672 \frac{1}{2}$
4m
11 (a) $x^{2} + y^{2} = 6xy$
Add '2xy' on both sides
 $x^{2} + y^{2} + 2xy = 6xy + 2xy$
 $\left\{ log (x+y)^{2} = log 8xy \right\}$
 $\left\{ log (x+y)^{2} = log 8xy \right\}$
 $\left\{ log (x+y)^{2} = log 8xy \\ log (x+y)^{2} = log 8xy \\ = log 2^{3} + log x + log y \\ = 3 log^{2} + log x + log y \\ = 3 log^{2} + log x + log y \\ = 3 log^{2} + log x + log y \\ = 3 log^{2} + log x + log y \\ = 1 [:: log x^{n} = m log x]$$

(b) Let 'a' be a positive integer

Take b = 3, Acc to Euclids division Lemma

$$a = bq + r, r = 0, 1, 2 (: 0 \le r < b)$$

 $\Rightarrow a = 3q$
 $= 3q + 1$
 $= 3q + 2$

(i) If $a = 3q$
 $\Rightarrow a^{3} = (3q)^{3}$
 $= 27a^{3}$

 $= 9 (3q^{3}) = 9m$

(ii) $a = 3q + 1$
 $\Rightarrow a^{3} = (3q+1)^{3}$
 $= 27q^{3} + 27q^{2} + 9q + 1$
 $= 9 (3q^{3}) = 9m$

 $a = 9 (3q^{3} + 3q^{2} + q) + 1$

(iii) If
$$a = 3q + 2$$

 $\Rightarrow a^3 = (3q+2)^3$
 $= 27q^3 + 54q^2 + 36q + 8$
 $= 9 (3q^3 + 6q^3 + 4q) + 8$
 $= 9m + 8$

For any positive integer, the cube is always in the form of

1

9m, 9m + 1 or 9m+8 Hence proved

4m

12 (a) Let the speed of the car = x kmph
distance travelled = 36 km
$$\therefore$$
 time taken = $\frac{36}{x}$ (1)
If speed is increased by 10 kmph, then

time taken =
$$\frac{36}{x+10}$$
(2)

ATP

Difference in time taken = 18 min

$$= \frac{18}{60} \text{ hr}$$

$$\therefore \frac{36}{x} - \frac{36}{x+10} = \frac{18}{60}$$
Simplifying $x^2 + 10x - 1200 = 0$
Solving $(x+40) (x-30) = 0$

$$\Rightarrow x = \{-40, 30\}$$

Speed of the car = 30 kmph

12 (b)
$$14 \text{ mm}$$

Length of the capsule = 14mm Width of the capsule = 5mm

The capsule is the combination of two hemispheres and a cylinder

 \therefore radius of hemisphere = $\frac{d}{2} = \frac{5}{2}$ mm

 \therefore Volume of two hemispherical ends $= 2 \times \frac{2}{3} \pi r^3$

$$= 2 \times \frac{2}{3} \times \frac{22}{7} \times \frac{5}{2} \times \frac{5}{2} \times \frac{5}{2} \right\} 1$$
$$= \frac{1375}{21} \text{ mm}^{3}$$

Volume of cylinder = $\pi r^2 h$

$$= \frac{22}{7} \times \frac{5}{2} \times \frac{5}{2} \times \left(14 - 2\left(\frac{5}{2}\right)\right) \quad \left.\right\} 1$$
$$= \frac{22}{7} \times \frac{5}{2} \times \frac{5}{2} \times 9 \text{ m}^{3}\text{m} = \frac{2475}{14} \text{ mm}^{3}$$

- .:. Total volume of capsule
 - = Volume of two hemispherical ends + Volume of cylinder

$$= \frac{1375}{21} + \frac{2475}{14} \left. \right\} 1$$

= 65.47 + 176.78
= 242.25 mm³ $\left. \right\} 1$ 4m

13 (a) For writing the table for $p(x) = x^2 - 4x - 5$ $1\frac{1}{2}$

X	-3	-2	-1	0	1	2	3	4	
$p(x) = x^2 - 4x - 5$	(-3) ² -4(-3)-5	(-2) ² -4(-2)-5	(-1) ² -4(-1)-5	0 ² -4(0)-5	1 ² -4(1)-5	2 ² -4(2)-5	3 ² -4(3)-5	42-4(4)-5	
у	16	7	0	-5	-8	-9	-8	-5	
(x, y)	(x, y) (-3, 16)		(-1, 0)	(0, 5)	(1, -8)	(2, -9)	(3, -8)	(4, -5)	

Scale = X-axis = 1 cm = 1 unitY-axis = 1 cm = 2 unit For Graph :

13 (b) For writing tables for equations
(i)
$$2x - y = 5$$

	(1) 2/	y – 5		_
	х	0	$\frac{5}{2}$	2
	у	-5	0	-1
	(x, y)	(0, -5)	$(\frac{5}{2}, 0)$	(2, -1)
Scale	= X-a	axis = 1	cm =	1 unit

(ii) 4x - 2y = 12

x	0	3	-2		
у	-6	0	-10	>2	2
(x, y)	(0, -6)	(3, 0)	(-2, -10)		

Solution : 1)		The Graph of pair of linear equations is a pair of parallel		
		lines.	$\frac{1}{2}$	
	2)	Hence the Equations are in inconsistent system.	Z	4m