SUMMATIVE ASSESSMENT - II - 2016-2017
 CLASS-X - MATHS - PAPER-II
 Part - A \& B
 KEY

Class: X
Part - A
Marks : 60

Section - I (Each question carries 1 mark)

1. Given points $\mathrm{A}(2,5) ; \mathrm{B}(6,1)$

Distance between two points

$$
\left.\begin{array}{rl}
\mathrm{AB} & \left.=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\right\} \frac{1}{2} m \\
& =\sqrt{(6-2)^{2}+(1-5)^{2}} \\
& =\sqrt{(4)^{2}+(-4)^{2}} \\
& =\sqrt{16+16} \\
& =\sqrt{32} \\
& =4 \sqrt{2} \text { units }
\end{array}\right\} \frac{1}{2} m
$$

2. A.A Law of Similarity :

If two angles of one triangle are respectively equal to the two angles of another triangle, then the two triangles are similar.
3.

$\left.\begin{array}{l}\text { 4. } \quad \operatorname{Cos}(\mathrm{A}+\mathrm{B})=\operatorname{Cos} \mathrm{A}+\operatorname{Cos} \mathrm{B} \text { is not right } \\ \text { Let us take } \mathrm{A}=60^{\circ} \cdot \mathrm{B}=30^{\circ} \text { then }\end{array}\right\} \frac{1}{2} m$
Let us take $A=60^{\circ} ; B=30^{\circ}$ then
$\operatorname{Cos}(\mathrm{A}+\mathrm{B})=\operatorname{Cos}\left(60^{\circ}+30^{\circ}\right)=\operatorname{Cos} 90^{\circ}=0$
$\left.\begin{array}{l}\operatorname{Cos} \mathrm{A}+\operatorname{Cos} \mathrm{B}=\operatorname{Cos} 60^{\circ}+\operatorname{Cos} 30^{\circ}=\frac{\sqrt{3}}{2}+\frac{1}{2}=\frac{\sqrt{3}+1}{2} \\ \therefore \operatorname{Cos}(\mathrm{~A}+\mathrm{B}) \neq \operatorname{Cos} \mathrm{A}+\operatorname{Cos} \mathrm{B}\end{array}\right\} \frac{1}{2} m$

Section - II (Each question carries 2 marks)

5. Let ' O ' be the centre of the two concentric circles.
' AB ' is the chord of the larger circle which touches the smaller circle
$\mathrm{OA}=\mathrm{OB}=5 \mathrm{~cm}$ (radii of larger circle)
$\mathrm{OD}=3 \mathrm{~cm}$ (radius of smaller circle)
and $\mathrm{OD} \perp \mathrm{AB}$

Since OAB is an isosceles triangle,
OD bisects AB
$\therefore \mathrm{AD}=\mathrm{DB}$
In $\triangle \mathrm{OAD}$, by phythagoras theorem

$$
\left.\begin{array}{rl}
\mathrm{AD} & =\sqrt{O A^{2}-O D^{2}} \\
& =\sqrt{5^{2}-3^{2}} \\
& =4 \\
\mathrm{AB} & =\mathrm{AD}+\mathrm{DB}=4+4=8 \mathrm{~cm}
\end{array}\right\} \frac{1}{1}
$$

6. Given that $\operatorname{Cos} \mathrm{A}=\frac{12}{13}$
$\operatorname{Sin} \mathrm{A}=\sqrt{1-\operatorname{Cos}^{2} A}$

$$
=\quad \frac{5}{13}
$$

$\left.\operatorname{Cosec} \mathrm{A}=\frac{1}{\operatorname{Sin} A}=\frac{13}{5}\right\} \frac{1}{2}$
$\left.\operatorname{Cot} \mathrm{A}=\frac{\operatorname{Sin} A}{\operatorname{Cos} A}=\frac{5 / 13}{12 / 13}=\frac{5}{12}\right\} 1$
7. Median $\left.=l+\left(\frac{\frac{n}{2}-c f}{f}\right) \times h\right\} 1$

Where $1=$ lower boundary of median class
$\mathrm{n}=$ number of observations
$\mathrm{cf}=$ cumulative frequency of class preceeding the median class $\} 1$
$\mathrm{f}=$ frequency of median class
$\mathrm{h}=$ size of the median class
8. Given that $\Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}$
$\left.\begin{array}{l}\text { and in } \triangle \mathrm{ABC}, \operatorname{Sin}=\frac{3}{5}=\frac{\text { opposite side to } \theta}{\text { hypotenuse }} \\ \text { In } \triangle \mathrm{DEF}, \tan \theta=\frac{9}{12}=\frac{\text { opposite side to } \theta}{\text { Adjacent side to } \theta}\end{array}\right\} \frac{1}{2}$
$\therefore 3$ and 9 are corresponding sides $\} \frac{1}{2}$
$\left.\begin{array}{l}\therefore \frac{\text { Area of } \triangle \mathrm{ABC}}{\text { Area of } \triangle \mathrm{DEF}}=\frac{3^{2}}{9^{2}}=\frac{9}{81}=\frac{1}{9} \\ \therefore \text { Ratio of areas of } \triangle \mathrm{ABC} \text { and } \triangle \mathrm{DEF}=1: 9\end{array}\right\} \frac{1}{2}$
9. Given that $\mathrm{DE} \| \mathrm{AB}$ in $\triangle \mathrm{ABC}$ and by thales theorem,

$$
\frac{C D}{A D}=\frac{C E}{B E}
$$

$$
\left.\Rightarrow \quad \frac{x+3}{8 x+9}=\frac{x}{3 x+4}\right\} \frac{1}{2}
$$

$$
\Rightarrow \quad(x+3)(3 x+4)=x(8 x+9)
$$

$$
\Rightarrow \quad 3 x^{2}+13 x+12=8 x^{2}+9 x
$$

$$
\begin{aligned}
& \Rightarrow \quad 5 x^{2}-4 x-12=0 \\
& \Rightarrow \quad(x-2)(5 x+6)=0
\end{aligned} \quad \quad \frac{1}{2}
$$

$\Rightarrow \quad x=2$ or $x=-\frac{6}{5}$
Since length is non negative, $x=2\} \frac{1}{2}$

Section - III (Each question carries 4 marks)

10 (a) Let the vertices of the parallelogram are
A (1, 2); B (4, y); C (x, 6); D (3, 5)
We know that mid points of the diagonals of a parallelogram are equal
\therefore Mid point of the diagonal $\mathrm{AC}=$ Mid point of the diagonal BD

$$
\begin{aligned}
& \left.\Rightarrow\left(\frac{1+x}{2}, \frac{2+6}{2}\right)=\left(\frac{4+3}{2}, \frac{y+5}{2}\right)\right\} 1 \\
& \left.\Rightarrow \frac{1+x}{2}=\frac{7}{2} \Rightarrow x=6\right\} 1 \\
& \text { and } \left.\frac{y+5}{2}=\frac{8}{2} \Rightarrow \mathrm{y}=3\right\} \frac{1}{2}
\end{aligned}
$$

(b) \begin{tabular}{lc}
Class \& Frequency

$30-39$ \& 2

$40-49$ \& 3

$50-59$ \& $20 f_{0}$

| $60-69$ | 31 |
| :---: | :---: |f_{1} modal class

\hline $70-79$ \& 17
\end{tabular}f_{2}

80-89 10
90-99 4
M ode $\left.=l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h\right\} 1 \mathrm{~m}$
Here $l=\frac{60+59}{2}=59.5 ; f_{1}=31 ; f_{0}=20$;
$f_{2}=17 ; \mathrm{h}=10$
\therefore Mode $\left.=59.5+\left(\frac{31-20}{62-20-17}\right) \times 10\right\} 1 \mathrm{~m}$
$=59.5+\left(\frac{11}{25}\right) \times 10$
$=59.5+4.4$
$=63.9$
4 m

11 (a) Given that OA CB is a quadrant of a circle with centre ' O ' and radius 3.5 cm
\therefore Area of the sector $\mathrm{OACB}=\frac{x}{360^{\circ}} \times \pi r^{2}$
Here $x=90 \mathrm{o} ; \Pi=\frac{22}{7} ; \mathrm{r}=3.5$
\therefore Area of the sector $\mathrm{OACB}=\frac{90^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 3.5 \times 3.5$

$$
\left.\begin{array}{l}
=\frac{1}{2} \times 11 \times 0.5 \times 3.5 \\
=9.625 \mathrm{~cm}^{2}
\end{array}\right\} \frac{1}{2} \mathrm{~m}
$$

OBD is a right angled triangle with sides

$$
\begin{equation*}
\mathrm{OB}=3.5 \text { and } \mathrm{OD}=2 \mathrm{~cm} \tag{1}
\end{equation*}
$$

Ar. of $\triangle \mathrm{OBD}=\frac{1}{2} \times \mathrm{OB} \times \mathrm{OD}$

$$
=\frac{1}{2} \times 3.5 \times 2=3.5 \mathrm{~cm}^{2}
$$

Area of shaded region $=$ Ar. of $\mathrm{OACB}-\mathrm{Ar} . \Delta \mathrm{OBD}\} \frac{1}{2}$

$$
\left.\begin{array}{l}
=9.625-3.5 \\
=6.125 \mathrm{~cm}^{2}
\end{array}\right\} \frac{1}{2}
$$

11
(b) (i) $\left.\frac{\operatorname{Sin} 30^{\circ}+\tan 45^{\circ}-\operatorname{Cosec} 60^{\circ}}{\operatorname{Cot} 45^{\circ}+\operatorname{Cos} 60^{\circ}-\operatorname{Sec} 30^{\circ}}=\frac{\frac{1}{2}+1-\frac{2}{\sqrt{3}}}{1+\frac{1}{2}-\frac{2}{\sqrt{3}}}=1\right\} 2 \mathrm{~m}$
(ii) $\left.2 \tan ^{2} 45^{\circ}+\operatorname{Cos}^{2} 30^{\circ}-\operatorname{Sin}^{2} 30^{\circ}=2(1)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}\right\} 1 \mathrm{~m}$

$$
\left.=2+\frac{3}{4}-\frac{1}{4}=\frac{5}{2}\right\} 1 \mathrm{~m}
$$

$4 m$

12 (a) Given that $\mathrm{A}(0,1), \mathrm{B}(2,1), \mathrm{C}(0,3)$ are the vertices of $\triangle \mathrm{ABC}$
Ar. $\left.\Delta \mathrm{ABC}=\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|\right\} \frac{1}{2} \mathrm{~m}$
Here $A\left(\begin{array}{cc}0, & 1 \\ x_{1} & y_{1}\end{array}\right) ; \quad B\left(\begin{array}{cc}2, & 1 \\ x_{2} & y_{2}\end{array}\right) ; \quad C\left(\begin{array}{cc}0, & 3 \\ x_{3} & y_{3}\end{array}\right) ;$
Ar. $\left.\Delta \mathrm{ABC}=\frac{1}{2}|O(1-3)+2(3-1)+0(1-2)|\right\} 1 \mathrm{~m}$

$$
=\frac{1}{2}|4|=2 \text { sq. units }
$$

Mid point of $\mathrm{B}(2,1) ; \mathrm{C}(0,3)$ is $\mathrm{D}=\left(\frac{2+0}{2}, \frac{1+3}{2}\right)=(1,2)$
Mid point of $\mathrm{C}(0,3) ; \mathrm{A}(0,1)$ is $\left.\mathrm{E}=\left(\frac{0+0}{2}, \frac{3+1}{2}\right)=(0,2)\right\} 1 \mathrm{~m}$
Mid point of $\mathrm{A}(0,1) ; \mathrm{B}(2,1)$ is $\mathrm{F}=\left(\frac{0+2}{2}, \frac{1+1}{2}\right)=(1,1)$

Ar. of $D\left(\begin{array}{cc}1, & 2 \\ x_{1} & y_{1}\end{array}\right), E\left(\begin{array}{cc}0, & 2 \\ x_{2} & y_{2}\end{array}\right), F\left(\begin{array}{cc}1, & 1 \\ x_{3} & y_{3}\end{array}\right)$ is
Ar. $\Delta \mathrm{DEF}=\frac{1}{2}|1(2-1)+0(1-2)+1(2-2)|$

$$
=\frac{1}{2}|1|=\frac{1}{2} \text { sq. units }
$$

$\therefore 4(\mathrm{Ar} . \triangle \mathrm{DEF})=4\left(\frac{1}{2}\right)=2=$ Ar. $\left.\Delta \mathrm{ABC}\right\} \frac{1}{2}$
12 (b) Given : A circle with Centre ' O ', ' P ' is a point lying outside the circle and PA and PB are two tangents to the circle from ' P '. 1 m
To prove : $\mathrm{PA}=\mathrm{PB}$
Proof: Join OA, OB and OP

$$
\angle \mathrm{OAP}=\angle \mathrm{OBP}=90^{\circ}
$$

(Angle between radii and tangents)
In Δ OAP and Δ OBP, $\left.\begin{array}{l}\mathrm{OA}=\mathrm{OB} \text { (radii of same circle) } \\ \mathrm{OP}=\mathrm{OP} \text { (common) }\end{array}\right\} 1 \mathrm{~m}$
$\therefore \Delta \mathrm{OAP} \cong \Delta \mathrm{OBP}$ (R.H.S. Congruency)
$\mathrm{PA}=\mathrm{PB} \quad\} 1 \mathrm{~m}$
Hence proved.
$4 m$
13 (a)

13 (b) For drawing rough sketch - 1m For construction - 2 m
For writing steps

- $\frac{1 \mathrm{~m}}{4 \mathrm{~m}}$

Rough Sketch

SUMMATIVE ASSESSMENT - II - 2016-2017
 CLASS-X - MATHS - PAPER-I
 KEY

Class : X Part B Marks : 20
III. भाषांशा:
14. C
15. B
16. A
17. A
18. C
19. D
20. C
21. D
22. A
23. C
24. A
25. A
26. C
27. B
28. A
29. A
30. A
31. D
32. B
33. D

