SUMMATIVE ASSESSMENT - II - 2016 - 2017

CLASS-X - MATHS - PAPER-II

	Part - A & B	
	KEY	
Class : X	Part - A	Marks : 60

Section - I (Each question carries 1 mark)

1. Given points A(2, 5); B (6, 1)

Distance between two points $AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \begin{cases} \frac{1}{2}m \\ \frac{1}{2}$

2. A.A Law of Similarity :

If two angles of one triangle are respectively equal to the two angles of another triangle, then the two triangles are similar. 1m

 $1 \mathrm{m}$

3.

Q Q P

4. $\operatorname{Cos} (A+B) = \operatorname{Cos} A + \operatorname{Cos} B \text{ is not right}$ Let us take $A = 60^{\circ}$; $B = 30^{\circ}$ then $\operatorname{Cos} (A+B) = \operatorname{Cos} (60^{\circ}+30^{\circ}) = \operatorname{Cos} 90^{\circ} = 0$ $\operatorname{Cos} A + \operatorname{Cos} B = \operatorname{Cos} 60^{\circ} + \operatorname{Cos} 30^{\circ} = \frac{\sqrt{3}}{2} + \frac{1}{2} = \frac{\sqrt{3}+1}{2}$ $\therefore \operatorname{Cos} (A+B) \neq \operatorname{Cos} A + \operatorname{Cos} B$

Section - II (Each question carries 2 marks)

5. Let 'O' be the centre of the two concentric circles. 'AB' is the chord of the larger circle which touches the smaller circle OA = OB = 5 cm (radii of larger circle) OD = 3cm (radius of smaller circle) and OD \perp AB Since OAB is an isosceles triangle, $\frac{1}{2}$ OD bisects AB $\therefore AD = DB$ In Δ OAD, by phythagoras theorem AD = $\sqrt{OA^2 - OD^2}$ > 1 $=\sqrt{5^2-3^2}$ = 4 $\frac{1}{2}$ AB = AD + DB = 4 + 4 = 8 cmGiven that $\cos A = \frac{12}{13}$ 6. Sin A $= \frac{5}{13}$ $\operatorname{Cosec} A = \frac{1}{SinA} = \frac{13}{5} \quad \left\{ \begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array} \right\}$ $= \frac{SinA}{CosA} = \frac{\frac{5}{13}}{\frac{12}{13}} = \frac{5}{12} \right\} 1$ Cot A $= l + \left(\frac{\frac{n}{2} - cf}{f}\right) \times h \qquad > 1$ Median 7. Where 1 = lower boundary of median class n = number of observationscf = cumulative frequency of class preceding the median class > 1f = frequency of median class

2m

2m

2m

h = size of the median class

8. Given that $\triangle ABC \sim \triangle DEF$

9.

and in
$$\triangle ABC$$
, $Sin = \frac{3}{5} = \frac{opposite \ side \ to \ \theta}{hypotenuse}$ $\left. \right\} \frac{1}{2}$
In $\triangle DEF$, $tan \ \theta = \frac{9}{12} = \frac{opposite \ side \ to \ \theta}{Adjacent \ side \ to \ \theta}$ $\left. \right\} \frac{1}{2}$
 $\therefore 3 \text{ and } 9 \text{ are corresponding sides} \right\} \frac{1}{2}$
 $\therefore \frac{Area \ of \ \Delta ABC}{Area \ of \ \Delta DEF} = \frac{3^2}{9^2} = \frac{9}{81} = \frac{1}{9}$
 $\therefore \text{ Ratio of areas of } \triangle ABC \text{ and } \triangle DEF = 1:9$ $\left. \right\} \frac{1}{2}$
Given that DE || AB in $\triangle ABC$
and by thales theorem,
 $\frac{CD}{AD} = \frac{CE}{BE}$
 $\Rightarrow \frac{x+3}{8x+9} = \frac{x}{3x+4}$ $\left. \right\} \frac{1}{2}$
 $\Rightarrow (x+3)(3x+4) = x(8x+9)$
 $\Rightarrow 3x^2 + 13x + 12 = 8x^2 + 9x$
 $\Rightarrow 5x^2 - 4x - 12 = 0$
 $\Rightarrow (x-2)(5x+6) = 0$
 $\Rightarrow x = 2 \text{ or } x = -\frac{6}{5}$
Since length is non negative, $x = 2$ $\left. \right\} \frac{1}{2}$

2m

2m

Section - III (Each question carries 4 marks)

 ≥ 1

10 (a) Let the vertices of the parallelogram are

A (1, 2); B (4, y); C (x, 6); D (3, 5)

We know that mid points of the diagonals of a parallelogram are equal

 \therefore Mid point of the diagonal AC = Mid point of the diagonal BD

$$\Rightarrow \left(\frac{1+x}{2}, \frac{2+6}{2}\right) = \left(\frac{4+3}{2}, \frac{y+5}{2}\right) \left.\right\} 1$$
$$\Rightarrow \frac{1+x}{2} = \frac{7}{2} \Rightarrow x = 6 \left.\right\} 1$$
and $\frac{y+5}{2} = \frac{8}{2} \Rightarrow y = 3 \left.\right\} \frac{1}{2}$

4m

(b) Class Frequency

$$30-39$$
 2
 $40-49$ 3
 $50-59$ $20 f_0$
 $\boxed{60-69}$ $31 f_1 \mod d c lass$
 $70-79$ $17 f_2$
 $80-89$ 10
 $90-99$ 4
Mode = $l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$ $\right\} 1m$
Here $l = \frac{60+59}{2} = 59.5; f_1 = 31; f_0 = 20;$
 $f_2 = 17; h = 10$
 \therefore Mode = $59.5 + \left(\frac{31-20}{62-20-17}\right) \times 10$ $\right\} 1m$
 $= 59.5 + \left(\frac{11}{25}\right) \times 10$
 $= 59.5 + \left(\frac{11}{25}\right) \times 10$
 $= 59.5 + 4.4$
 $= 63.9$

11 (a) Given that OACB is a quadrant of a circle with centre 'O' and radius 3.5cm

10

 $\therefore \text{ Area of the sector OACB} = \frac{x}{360^{\circ}} \times \pi r^{2}$ Here $x = 900; \ \Pi = \frac{22}{7}; \ r = 3.5$ $\therefore \text{ Area of the sector OACB} = \frac{90^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 3.5 \times 3.5$ $= \frac{1}{2} \times 11 \times 0.5 \times 3.5$ $= 9.625 \text{ cm}^{2}$

4m

OBD is a right angled triangle with sides
OB = 3.5 and OD = 2 cm
Ar. of
$$\triangle OBD = \frac{1}{2} \times OB \times OD$$

 $= \frac{1}{2} \times 3.5 \times 2 = 3.5 \text{ cm}^2$
Area of shaded region = Ar. of OACB - Ar. $\triangle OBD$ $\left\{ \begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array} \right\}$
 $= 9.625 - 3.5$
 $= 6.125 \text{ cm}^2$ $\left\{ \begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array} \right\}$

11 (b) (i)
$$\frac{Sin \ 30^{\circ} + \tan \ 45^{\circ} - Co \sec \ 60^{\circ}}{Cot \ 45^{\circ} + Cos \ 60^{\circ} - Sec \ 30^{\circ}} = \frac{\frac{1}{2} + 1 - \frac{2}{\sqrt{3}}}{1 + \frac{1}{2} - \frac{2}{\sqrt{3}}} = 1$$

(ii)
$$2 \tan^2 45^\circ + \cos^2 30^\circ - \sin^2 30^\circ = 2(1)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 - \left(\frac{1}{2}\right)^2 \quad in = 2 + \frac{3}{4} - \frac{1}{4} = \frac{5}{2} \quad in = 4m$$

12 (a) Given that A (0, 1), B (2, 1), C (0, 3) are the vertices of
$$\Delta ABC$$

Ar. $\Delta ABC = \frac{1}{2} | x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) | } \frac{1}{2} m$
Here $A \begin{pmatrix} 0, & 1 \\ x_1 & y_1 \end{pmatrix}; B \begin{pmatrix} 2, & 1 \\ x_2 & y_2 \end{pmatrix}; C \begin{pmatrix} 0, & 3 \\ x_3 & y_3 \end{pmatrix};$
Ar. $\Delta ABC = \frac{1}{2} | O (1 - 3) + 2 (3 - 1) + 0 (1 - 2) |$
 $= \frac{1}{2} |4| = 2$ sq. units

Mid point of B (2, 1); C (0, 3) is $D = \left(\frac{2+0}{2}, \frac{1+3}{2}\right) = (1, 2)$ Mid point of C (0, 3); A (0, 1) is $E = \left(\frac{0+0}{2}, \frac{3+1}{2}\right) = (0, 2)$ Mid point of A (0, 1); B (2, 1) is $F = \left(\frac{0+2}{2}, \frac{1+1}{2}\right) = (1, 1)$

Ar. of
$$D\begin{pmatrix} 1, & 2\\ x_1 & y_1 \end{pmatrix}$$
, $E\begin{pmatrix} 0, & 2\\ x_2 & y_2 \end{pmatrix}$, $F\begin{pmatrix} 1, & 1\\ x_3 & y_3 \end{pmatrix}$ is
Ar. $\Delta DEF = \frac{1}{2} \mid 1 \ (2-1) + 0 \ (1-2) + 1 \ (2-2) \mid$
 $= \frac{1}{2} \mid 1 \mid = \frac{1}{2}$ sq. units
 $\therefore 4 (Ar. \Delta DEF) = 4\left(\frac{1}{2}\right) = 2 = Ar. \Delta ABC \mid \frac{1}{2}$

.

.

~.

Rough Sketch

SUMMATIVE ASSESSMENT - II - 2016 - 2017

CLASS-X - MATHS - PAPER-I

KEY

Class : X	Part - B	Marks : 20
।।।. भाषांशाः		
14. C		
15. B		
16. A		
17. A		
18. C		
19. D		
20. C		
21. D		
22. A		
23. C		
24. A		
25. A		
26. C		
27. B		
28. A		
29. A		
30. A		
31. D		
32. B		

33. D