SET - I SUMMATIVE ASSESSMENT - II - 2016 - 2017 MATHEMATICS (English Medium)

		()						
Class	: VI		(Max. Marks : 80)					
PART-A								
		SECTION - I	$4 \ge 2 = 8$					
1.	Given the sum of 2 Integers	s = -156						
	First Integer	$= 225 \int$	(½ mark)					
	Second Integer = Sum of tw	vo Integers - First Integer	(½ mark)					
		= -156 - 225						
		= -381 <i>f</i>	(1mark)					
2.	Given digits are 7,5,3							
	Two different 3 digits numbers formed using them are : $735,375$ ($\frac{1}{2}$ m)							
	Divisibility rule for 3 : If the sum of digits of a number is divisible by 3 then the							
	number is divisible by 3	(½ m)	-					
	735 : Sum of digits 7+3+5	5 = 15 is divisible by 3						
	:. 735 is divisible by	y 3						
	375 : Sum of digits = $3+7$	+5 = 15 is divisible by 3						
	\therefore 375 is divisible by	y 3	(½ m)					
	Divisibility rule for 5 : If the digit at units place is either 'o' or '5' then the number is							
	divisible by 5.)						
	735,375 are divisible by 5.	<i>}</i>	(½ m)					
	Note:- Marks may be awarded for 'any other two numbers' and for verification.							
3.	Expression for "7 is added	to 6 times of P" is 6P+7	(1m)					
	Expression for "10 is subtracted from 2 tmes of K" is 2K-10 (1m)							
4.	Length of dress material bo	ought by Mrs. Rajini for her	Elder daughter $= 6.25$ mtrs					
	Length of dress material bought by Mrs. Rajini for her younger daughter = 5.75mtrs							
	Total length of dress ma	terial bought by Mrs. R	ajini for her two daughters					
			= 6.25 m + 5.75 m					
			= 12.00meters					
			= 12 metres					
		SECTION - I	5x4 = 20					
5.	Given that 4 bells ring at a gap of 4,7,12,84 minutes respectively							
	The time at which all the fo	our bells ring $= 8'O$ clock	(1m)					
	The time at which all the bells ring together again = L.C.M of $4,7,12,84$ (½ m)							
	2 4,7,12,84	$=2x^{2}$	2x3x7					
	$\frac{2}{3}$ $\frac{2,7,0,42}{1,7,1,7}$	= 84	minutes					
	$7 1,1,1,1$ $J_{(11/2 m)}$	=1ho	our 24 min $(\frac{1}{2} m)$					

: The time at which all the bells ring after 8'O clock = 9'O clock 24 minutes ($\frac{1}{2}$ m)

6. Given expression is 2P+3 Value of 2P+3 at P = 4 is 2(4) + 3= 12 + 3= 15(1m)at P = -3 is 2(-3) + 3= -6 + 3= -3 (1m)= 0 is 2(0)+3at P = 0 + 3= 3 (1m)at P = $-\frac{3}{2}$ is $x\left(-\frac{3}{2}\right)+3$ = -3+3 = 0(1m)7. (a) Game, played by most of students = cricket (1m)(b) No. of students played Kabaddi = 6x5 = 30No. of students played Volleyball = 5x5 = 25differnce = 30-25 = 5(1m): 5 more students play Kabaddi than that of Volleyball (1/2 m) No. of students played Kho-Kho = 3x5 = 15No. of students played Cricket = 8x5 = 40difference = 40-15 = 25(1m) \therefore 25 less number of students play Kho-Kho then that of cricket (1/2 m) 8. (a) No. of end points that a linesegment has = 2(1m)(b) No. of end points that a Ray has = 1(1m)(c) No. of end points that a line has = 0(1m)(d) No. of end points that a circle has = 0(1m)9. The height at which a kite was flying from the ground = 250 metres The height raised by kite = +50 metres The height lowered by kite = -125 metres (2m)Now, the height at which the kite was flying from the ground = 250 + 50 - 125 metres = 300-125= 175metres (2m)10-A The distance between the school and Gayatri's house = 1 km 875 metres, = 1.875 km(1m)Distance walked by Gayatri in one day = 1.875km+1.875km. = 3.750km (1m)1.875 1.875 3.750km (2m) Total distance walked by Gayatri in 6 days = 3.750km x 6 3Ø = 22.500km 3.750x6 (2m)42+3 = 4522.500 18 + 4 = 22(2m)

OR

- 10-B No. of Sweet boxes bought by Ramu = 19 No. of sweets contained in each box = 228 (2m) \therefore Total no. of sweets in 19 boxes = 228x19 = 4332_2 No. of sweets given to his friends 3456_1 No. of sweets left over = Total no. of sweets - no.of sweets given = 4332_32_3456 = 876 (2m)
- 11-A Time taken by Renu to walk around the school ground = $2\frac{1}{5}$

$$=\frac{11}{5}$$
 (1m)

Time taken by Snigdha to walk around the school ground = $\frac{7}{4}$ minutes (1/2m)

$$\frac{11}{5} = \frac{11}{5} \times \frac{4}{4} = \frac{44}{20}$$

$$\frac{7}{4} = \frac{7}{4} \times \frac{5}{5} = \frac{35}{20}$$
 [L.C.M of 5,4 = 20] (2m)

 $\frac{35}{20} < \frac{44}{20}$ i.e., $\frac{7}{4} < \frac{11}{5}$ (1m)

: Snigdha takes less time to walk around the ground (1m)

difference
$$=$$
 $\frac{44}{20} - \frac{35}{20} = \frac{44 - 35}{20} = \frac{9}{20}$ (1m)
 \therefore Snigdha takes $\frac{9}{20}$ minutes less time then that of Renu (1m)

11-BThe distance that Anil supposed to walk = 10km
= 10.000km(1m)Distance travelled by Anil by Bus = 5km, 28 metres
Distance travelled by Anil by Auto = 2km 256metres
Distance travelled by Anil by cycle = 1km 30metres
Total distance covered by Anil by all vehicles= 1.030km
= 8.314km

Distance covered by Anil on foot = Total distance travelled - total distance travelled by all

$$\begin{array}{c} \text{vehicles} (1m) \\ = 10.000 \text{km} \cdot 8.314 \text{km} (1m) \\ = 1.686 \text{km} (1m) \\ 12\text{-A} (i) \text{ Given sequence} : 3,6,9,12,..... (1m) \\ 1^{\text{st}} \text{ term} 2^{\text{nd}} \text{ term} 3^{\text{rd}} \text{ term} 4^{\text{th}} \text{ term} \dots n^{\text{th}} \text{ term} \\ 3 & 6 & 9 & 12 & \dots \\ 3x1 & 3x2 & 3x3 & 3x4 & \dots & 3 \times n \end{array}$$

 \therefore nth term of the given sequence is 3n (1m) (ii) Given equation is 2Z+3=7L.H.S = 2Z+3, R.H.S = 1Value of L.H.S at z = 2 is 2(2)+3= 4 + 3= 7 = R.H.S(2m) \therefore 2 is a solution of given equation 2Z+3 = 7 (1m) OR Fraction form of figure(i) = $\frac{3}{8}$ 12-B Fraction form of figure(ii) = $\frac{6}{8}$ Fraction form of figure(iii) = $\frac{4}{8}$ Fraction form of figure(iv) = $\frac{1}{8}$ (4m) Ascending order of the fractions $\frac{3}{8}, \frac{6}{8}, \frac{4}{8}, \frac{1}{8}$ is $\frac{1}{8} < \frac{3}{8} < \frac{4}{8} < \frac{6}{8}$ (2m) Decending order of the fractions is $\frac{6}{8} > \frac{4}{8} > \frac{3}{8} > \frac{1}{8}$ (2m) 13-A Scale: 1 cm = 5 watches (1 m)45 40. No. of Watches 35 30-25-20-15-10-5-(7m) Tuesday Thursday Friday Saturday Wednesday Monday

13-B (i) Adding (-3),+8 on number line

(ii) Adding (-5), (-3), (+4) on number line

PART - B SECTION - IV

14 (D)	15(B)	16(C)	17(A)	18(B)	19(B)
20(C)	21(D)	22(C)	23(C)	24(C)	25(B)
26(B)	27(D)	28(D)	29(B)	30(C)	31(D)
32(B)	33(B)				