PART - A
 SECTION - I

1. Sum of an acute angles in a right angles $=90^{\circ}$

Ratio of an acute angles =4:5
Sum of their ratios $=9$
First angle $=90^{0} \times \frac{4}{9}=40^{0} \quad(1 / 2 \mathrm{~m})$
Second angle $\left.=90^{\circ} \times \frac{5}{9}=50^{\circ} \quad(1 / 2 \mathrm{~m})\right\}$
2. $[4 \times(-2)] \times 5=4 \times[(-2) \times 5]$
$-8 \times 5=4 \times(-10)$
$-40=-40$
This is Associative property under multiplication of integers
3. 1 meter $=100 \mathrm{~cm}$

2704 meters $=27.4 \times 100 \mathrm{~cm}$
4. (i) Opposite sides of a Black Board
(ii) Ironbars of window

Note:- Any two examples like above

SECTION - II
$5 \times 4=20$
5. \quad Principle $=\mathrm{P}=$ Rs. 6500

Time $=\mathrm{T}=4$ years
Rate of interest $=\mathrm{R}=9 \%$

$$
\begin{align*}
& \text { Interest }=\quad I=\frac{\mathrm{PTR}}{100} \tag{1/2~m}\\
& I=\frac{6500 \times 4 \times 9}{100} \\
& \mathrm{I}=65 \times 36 \\
& \mathrm{I}=\mathrm{Rs} .2340 \tag{1/2m}
\end{align*}
$$

Amount $=\mathrm{A}=\mathrm{P}+\mathrm{I}$
Amount $=\mathrm{A}=$ Rs. $6500+2340$
Amount $=\mathrm{A}=$ Rs .8840
06. Average $=\frac{\text { Sum of the observations }}{\text { Number of observations }}$

Average

$$
\begin{align*}
& =\frac{246+238+212+248+256+216}{6}(2 \mathrm{~m}) \tag{1m}\\
& =\frac{1416}{6} \\
& =236 \tag{1m}
\end{align*}
$$

Average
(attendance of the school)
07.

In ${ }_{\Delta} \mathrm{POQ}$ and ${ }_{\Delta} \mathrm{ROS}$
$\mathrm{PO}=\mathrm{OR}=5 \mathrm{~cm}$ (side)
$\angle \mathrm{POQ}=\angle \mathrm{ROS}=($ Angle $)($ Vertically opposite angles $)$
$\mathrm{QO}=\mathrm{OS}=4 \mathrm{~cm}$ (side)
By S.A.S Property
${ }_{\Delta} \mathrm{POQ} \cong \mathrm{ROS}$
08. According to sides
(i) Equilateral triangle
(ii) Isosceles triangle
(iii) Scalane triangle

According to angles:
(i) Acute angle triangle
(ii) Right angle triangle
(iii) Obtuse angle triangle
09. Cost of 5 kgs tomatoes $=65.00$

Cost of 1 kg tomatoes $=65 / 5=13$
Cost of 8 kgs tomatoes $=13 \mathrm{x} 8$
Cost of 8 kgs tomatoes $=104$
Ramana will pay for 8 kgs tomatoes $=104$

SECTION - III

10-A Let the breadth of the Rectangle $=\mathrm{x} \mathrm{m}$
Twide the breadth $=2 \mathrm{x} \mathrm{m}$
Its length $=(2 x-8) \mathrm{m}$
Perimeter of the rectangle $=2(1+b)$
Perimeter of the Rectangle $=2(2 x-8+x) m$
$=2(3 x-8) \mathrm{m}$
$=(6 x-16) \mathrm{m}$
By problem, the perimeter of the rectangle $=56 \mathrm{~m}$
$6 x-16=56$
$6 x=56+16$
$\mathrm{x}=72 / 6$
$\mathrm{x}=12$
Breadth of the rectangle $=x 12 \mathrm{~m}$
Length of the rectangle $=2 \mathrm{x}-8$
$=2 \times 12-8$
Length of the rectangle $=24-8=16 \mathrm{~m}$
$10-\mathrm{B}$ (i) $5 \frac{1}{3}+4 \frac{2}{3}$

$$
\begin{align*}
& =\frac{28}{5}+4 \frac{22}{5} \\
& =\frac{50}{5} \\
& =10 \tag{2m}
\end{align*}
$$

(ii) $3 \frac{1}{3}-2 \frac{2}{3}$

$$
\begin{align*}
& =\frac{10}{3}-\frac{8}{3} \\
& =\frac{10-8}{3} \\
& =\frac{7}{3}=2 \frac{1}{3} \tag{2m}
\end{align*}
$$

(iii) $4 \frac{5}{7} \times 3 \frac{2}{3}$

$$
\begin{aligned}
& =\frac{33}{7} \times \frac{11}{3} \\
& =\frac{33^{11}}{7} \times \frac{11}{8}
\end{aligned}
$$

$$
\begin{equation*}
=\frac{121}{7}=17 \frac{2}{7} \tag{2m}
\end{equation*}
$$

(iv) $5 \frac{6}{8} \div 2 \frac{3}{4}$
$=\frac{46}{8} \div \frac{11}{4}$

$$
=\frac{46^{23}}{8_{2}} \times \frac{4}{11}
$$

$$
\begin{equation*}
=\frac{23}{11}=2 \frac{1}{11} \tag{2m}
\end{equation*}
$$

11-A S.P of each cycle $=$ ' . 3000
Grain\% on first cycle - 20%
Loss $\%$ on second cyle $=20 \%$

For first cycle
If C.P is 100 , then profit is 20 then $\mathrm{SP}=120$
If S.P is `.120 then C.P \(=100\) If S.P is` 1 then C.P $=\frac{100}{120}$
If S.P is `. 3000 then C.P \(=\frac{100}{120} \times 3000\) \(=\) `. 2500
For second cycle
If C.P is `. 100 then the loss is 20 then S.P \(=80\) If S.P is \({ }^{`} .80\) then C.P $=100$
If S.P is `. 1 then \(\mathrm{CP}=\frac{100}{80}\) If SP is `. 3000 then $\mathrm{CP}=\frac{100}{80} \times 3000$
`. 3750 Total C.P = `. $2500+` .3750=` .6250\}$
Total S.P $\left.={ }^{`} .3000+{ }^{`} .3750={ }^{`} .6000\right\}$
\therefore Loss $=$ C.P - S.P
Loss $=6250-6000\}$
Loss $=$ ' .250
$\operatorname{Loss} \%=\frac{\text { loss }}{\mathrm{CP}} \times 100$
$\left.\operatorname{Loss} \%=\frac{250}{6250} \times 100=4 \%\right\}$
11-B Ratio of Engineers and doctors $=3: 4$
(i) No. of Engineers $=18$

Let, No.of Doctors $=\mathrm{x}$
$\therefore 3: 4 \quad=18: \mathrm{x}$
Product of the Means $=$ Product of extremities
$3 \times x=4 \times 18$
$\mathrm{x}=\frac{4 \times 18^{6}}{3}$
$\mathrm{x}=24$
\therefore Number of Engineers $\mathrm{x}=24$
(ii) No. of doctors $=56$

Let, no. of doctors $=y$
$\therefore 3: 4 \quad=\mathrm{y}: 56$
$4 \times y=3 \times 56$
$y=\frac{3 \times 56^{14}}{x}$
$\mathrm{y} \quad=42$
\therefore Number of Doctors $\mathrm{y}=42$

12-A Statement : The sum of the angles of a triangle is 180°
Given : A triangle ABC

To prone $: \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$

Construction : Though 'A' draw a line $\overline{\mathrm{PQ}}$ parallel to BC
Proof:
From the figure,
$\angle 2=\angle 5$ (alternate interior angles)
$\angle 3=\angle 4$ (alternate interior angles)
$\angle 2+\angle 3=\angle 5+\angle 4$ (adding(1) and (2)
Adding $\angle 1$ on both sides
$\angle 1+\angle 2+\angle 3=\angle 1+\angle 5+\angle 4$
$\angle 1+\angle 2+\angle 3=180^{\circ} \quad$ (Angles forming a straight line)
$\therefore \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
\therefore The sum of the angles of a triangle is 180°
12-B (i)

In $\triangle \mathrm{ABC}$ and ${ }_{\Delta} \mathrm{PQR}$

$$
\begin{equation*}
\mathrm{AB}=\mathrm{PQ}=3 \mathrm{~cm} \text { (side) } \tag{2m}
\end{equation*}
$$

$\angle \mathrm{B}=\angle \mathrm{Q}=120^{\circ}$ (angle)
$\mathrm{BC}=\mathrm{QR}=4 \mathrm{~cm}$ (side)
By S.A.S Congruency criterion
$\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$
(ii)

In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ACD}$
$\mathrm{AB}=\mathrm{AC}$ (given)
$\angle \mathrm{BAD}=\angle \mathrm{CAD}$ (given)
$\mathrm{AD}=\mathrm{AD}$ (common)
By S.A.S congruency criterion
$\triangle \mathrm{ABD} \cong \angle \mathrm{ACD}$

13-A (i) | Class | No.of Students |
| :--- | :---: |
| | VI |
| VII | 84 |
| | VIII |
| IX | 96 |
| | X |

Scale:
On x -axis, $1 \mathrm{~cm}=1$ class
On y-axis, $1 \mathrm{~cm}=10$ units
(ii)

.For each correct rectangle one mark $(5 \times 1=5 \mathrm{~m})$
.For Axis and marking numbers and classes (2m)

13-B (i) PIE Diagram

Time Spent for	Time Spent	Angle of sector
Sleep	8 hrs	$\frac{8}{24} \times 360^{\circ}=120^{\circ}$
School	6 hrs	$\frac{6}{24} \times 360^{\circ}=90^{\circ}$
Play	2 hrs	$\frac{2}{24} \times 360^{\circ}=30^{\circ}$
Others	8 hrs	$\frac{8}{24} \times 360^{\circ}=120^{\circ}$
Total	24 hrs	360^{0}

(ii) for drawn diagram

PART - B
 SECTION - IV

$14(\mathrm{C})$	$15(\mathrm{~B})$	$16(\mathrm{D})$	$17(\mathrm{~B})$	$18(\mathrm{~A})$	$19(\mathrm{C})$
$20(\mathrm{~B})$	$21(\mathrm{~A})$	$22(\mathrm{C})$	$23(\mathrm{D})$	$24(\mathrm{~B})$	$25(\mathrm{C})$
$26(\mathrm{C})$	$27(\mathrm{~A})$	$28(\mathrm{~B})$	$29(\mathrm{C})$	$30(\mathrm{C})$	$31(\mathrm{C})$

32(A) 33(A)

