1.

$$
\begin{aligned}
& \angle \mathrm{COD}=\angle \mathrm{AOB}=90^{\circ}(\therefore \mathrm{AB}=\mathrm{CD}) \\
& \angle \mathrm{OCD}=\angle \mathrm{ODC}=\mathrm{X}^{0}(\therefore \mathrm{OC}=\mathrm{OD}) \\
& \angle \mathrm{OCD}+\angle \mathrm{ODC}+90^{\circ}=180^{\circ} \\
& \mathrm{X}+\mathrm{X}=180^{\circ}-90^{\circ} \\
& 2 \mathrm{X}=90^{\circ} \\
& \mathrm{X}=\frac{90}{2}=45^{\circ} \\
& \angle \mathrm{OCD}=\mathrm{X}=45^{\circ}
\end{aligned}
$$

2. Given Inclusive classes : 10-19, 20-29, 30-39, 40-49
$\frac{10-9}{2}=\frac{1}{2}=0.5$
Exclusive classes : 9.5-19.5, 19.5-29.5, 29.5-39.5, 39.5-49.5
3. Table with suitable units

S.No	Dimension	Area Units
1	mm	Square $\mathrm{m} \cdot \mathrm{m}\left(\mathrm{m} \cdot \mathrm{m}^{2}\right)$
2	cm	$\mathrm{~cm}^{2}$
3	m	$\mathrm{~m}^{2}$
4	km	$\mathrm{~km}^{2}$

4.

SECTION - II

$$
\text { 5. } \quad 6 x=192
$$

$$
\begin{aligned}
& 3 x-17+2 x+5+x=180^{\circ} \text { (straight angle) } \\
& 6 x-12=180^{\circ} \\
& 6 x=180^{\circ}+12 \\
& 6 x=192 \\
& x=\frac{192}{6}=32^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \angle A O P=3 x-17=3 \times 32-17=96-17=79^{0} \\
& \angle A O Q=3 x-17+2 x+5=5 x-12=5 x 32-12 \\
& =160-12 \\
& =148^{\circ}
\end{aligned}
$$

6. Marks

5
10
15
20
25
30

No. of Students C.F
22
6
8
18
26
$10 \quad 36$
$9 \quad 45$
$8 \quad 53$
(i) Median Class $=\frac{53+1}{2}=\frac{54}{2}=27^{\text {th }}$ observation Median $=20$
(ii) \quad Mode $=15$ (\therefore Highest frequency)
7. Given : In $\triangle \mathrm{ABC}, \mathrm{D}$ and E are the midpoints of BC and AD respectively
RTP : Area of $\Delta \mathrm{ABC}=4 \mathrm{X}$ Area of ${ }_{\Delta} \mathrm{ABE}$
Proof : In $\triangle \mathrm{ABC}$
AD is the median, If divides the triangle into equal triangles
Area of $\triangle \mathrm{ADB}=$ Area of $\Delta \mathrm{ADC}=\frac{1}{2} \Delta \mathrm{ABC} \rightarrow(1)$
In $\triangle \mathrm{ADB}, \mathrm{BE}$ is Median
\therefore Area of ${ }_{\Delta} \mathrm{ABE}=\frac{1}{2}$ Area of $\Delta \mathrm{ABD} \rightarrow(2)$
From (1) and (2)
Area of ${ }_{\Delta} \mathrm{ABE}=\frac{1}{4}$ Area of ${ }_{\Delta} \mathrm{ABC}$
$=$ Area of $\Delta \mathrm{ABC}=4 \mathrm{x}$ Area of ${ }_{\Delta} \mathrm{ABE}$
8. (i) Area of a triangle $=\frac{1}{2} b h$
(ii) Area of a Rhombus $=\frac{1}{2} d_{1} d_{2}$
9. $\mathrm{BD}=4 \mathrm{~cm}$
$\mathrm{AC}=\mathrm{BD}=4 \mathrm{~cm}(\because \mathrm{ABCD}$ is a square $)$
Diagonals are equal in square
Radius $=\mathrm{r}=4 \mathrm{cms}$
Area of circle $=$

$$
\begin{aligned}
& =\pi \mathrm{r}^{2} \\
& =\pi \times 4 \times 4 \\
& =\pi \times 16
\end{aligned}
$$

Area of circle $=16 \pi$

$$
\begin{aligned}
& \frac{d 2}{2} \text { sq.units } \\
\text { Area of a square }= & \frac{4^{2}}{2} \\
& =\frac{16}{2}=8 \text { sq. } \mathrm{cm}
\end{aligned}
$$

Ratio of Area of the circle and area of a square $=16 \pi: 8=2 \pi: 1$
10-A No. of No.of $\quad d i=x_{i}-A \quad f_{i} d_{i}$ centuries 25
20
15
10 crickers $10 \quad 10$ 100
22
5
110 $18 \quad 0$
$24-5$
0
-120
5

46
$\sum f_{i}=120$

10-B Suppose, we assume $\mathrm{A}=15$

$$
\begin{aligned}
& \text { Mean }=A+\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{~d}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}} \\
& \begin{aligned}
\text { Mean } & =15+\frac{-370}{120} \\
& =15-3.08 \\
\text { Mean } & =11.92
\end{aligned}
\end{aligned}
$$

11-A
$\mathrm{PQ} \perp \mathrm{PS}, \mathrm{PQ} / / \mathrm{SR}$
$\angle \mathrm{SQR}=28^{\circ}$ and $\angle \mathrm{QRT}=65^{\circ}$
In a triangle exterior angle $(\angle \mathrm{QRT})$ is the sum of two opposit interior angles
$\angle \mathrm{QRT}=\angle \mathrm{SQR}+\angle \mathrm{QSR}$
$65^{\circ}=28^{\circ}+\angle \mathrm{QSR}$
$\therefore \angle \mathrm{QSR}=65^{\circ}-28^{\circ}=37^{\circ}$
(i) $\mathrm{PQ} / / \mathrm{SR}$ is given

$$
\begin{aligned}
& \angle x=\angle Q S R(\text { Alternate angle }) \\
& \mathrm{x}^{0}=37^{0}
\end{aligned}
$$

(ii) PQ PS is given

$$
x+y=90^{\circ}
$$

$$
37^{0}+y=90^{\circ}
$$

$$
y=90^{\circ}-37^{\circ}
$$

$$
y=53^{\circ}
$$

$$
\therefore x=37^{\circ} \text { and } y=53^{\circ}
$$

12-A Given

$$
\begin{aligned}
& \frac{a+b+c}{3}=42 \\
& a+b+c=126 \\
& 60+48+c=126 \\
& =126+108 \\
& c=18
\end{aligned}
$$

Marks obtained by the Latha $=18$
Substituting, $b=48, c=18$ in (1), we get
$48+18+d=132$
$66+\mathrm{d}=132$
$\mathrm{d}=132-66$
d=66
Marks obtained by Sravani, $\mathrm{d}=66$
\therefore Marks obtained by Sai, Raju, Latha, Sravani are 60+,48,18,66 respectively
12-B From the figure
$\Delta \mathrm{APQ}, \Delta \mathrm{PQRS}$ are on the same base PQ and beween the same parallel lines $P Q$ and $R S$
$\therefore \Delta \mathrm{APQ}=\frac{1}{2} \square \mathrm{PQRS}$
$\square \mathrm{PQRS}-\Delta \mathrm{APQ}=\frac{1}{2} \square \mathrm{PQRS}$
$\frac{1}{2} \square \mathrm{PQRS}=\Delta \mathrm{ASP}+\Delta \mathrm{ARQ}$

The farmer may sow groundnuts on APQ region
The farmer may sow pulses on Δ ASP region
The farmer may sow Paddy on $\triangle \mathrm{ARQ}$ region
13 -A In $\triangle \mathrm{ABC}, \mathrm{BC}=6 \mathrm{~cm}, \angle \mathrm{~A}=52^{\circ}, \angle \mathrm{B}=48^{\circ}$

$$
\begin{aligned}
& \angle \mathrm{A}+\angle \mathrm{B}+180^{\circ} \\
& 52^{\circ}+48^{\circ}+\angle C=180^{\circ} \\
& 100^{\circ}+\angle C=180^{\circ} \\
& \angle C=180^{\circ}-100^{\circ} \\
& \angle C=80^{\circ}
\end{aligned}
$$

13-B Highest score $=475$
Lowest score $=209$
Range $=$ Highest score $=$ Lowest score
Clas size $=50$
No. of Classes $=\frac{266}{50}=5.32$

Classes	Tally Marks	Frequency
$200-250$	I I I I	4
$250-300$	III I I I	8
$300-350$	II I I	6
$350-400$	II I I	4
$400-450$	III I I	7
$450-500$	III I	6
	Total	$\underline{35}$

PART - B
 SECTION - IV

$14(\mathrm{~B})$	$15(\mathrm{D})$	$16(\mathrm{D})$	$17(\mathrm{C})$	$18(\mathrm{~A})$	$19(\mathrm{~B})$
$20(\mathrm{D})$	$21(\mathrm{D})$	$22(\mathrm{D})$	$23(\mathrm{~A})$	$24(\mathrm{~B})$	$25(\mathrm{~B})$
$26(\mathrm{~B})$	$27(\mathrm{C})$	$28(\mathrm{~B})$	$29(\mathrm{C})$	$30(\mathrm{~B})$	$31(\mathrm{D})$
$32(\mathrm{~A})$	$33(\mathrm{D})$				

