(Max. Marks : 40)

PART - A
 SECTION - I

$4 \times 2=8$ (1/2m)
$\mathrm{r}^{2}=\frac{616 \times 7}{4 \times 22} \Rightarrow \mathrm{r}=7$
\therefore radius $=7 \mathrm{~cm}$
2. Four angles of Quadrilateral $2 \mathrm{x}, ~ 4 \mathrm{x}, 5 \mathrm{x}, 7 \mathrm{x}, 8 \mathrm{x}$
$2 x+4 x+5 x+7 x=360^{0}$
$18 \mathrm{x}=360^{\circ}, \Rightarrow \mathrm{x}=20^{\circ}$
\therefore Angles or Quadrilatiral are $40^{\circ}, 80^{\circ}, 100^{\circ}, 140^{\circ}$
3. S.A.S congrence rule :-

Two triangles are congruent if two sides and the included angle of one triangle are equal to the two sides and included angle of the other triangle
4. Divide each unit into five equal parts to the right and left sides of zero on the number line. Take 13 ports left side or the zero if represents $\frac{13}{5}$

SECTION - II

$5 \times 4=20$
5. Volume of the cylinder $(\mathrm{V})=308 \mathrm{~cm}^{3}$
$\pi r^{2} h=308$
height $(\mathrm{h})=8 \mathrm{~cm}$
$\frac{22}{7} \times r 2 \times 8=308$
$r 2=\frac{308 \times 7}{22 \times 8}=\frac{49}{4}$
$\therefore r=\sqrt{\frac{49}{4}=\frac{7}{2} \mathrm{~cm}}$

$$
\begin{align*}
& 2 \pi \pi \mathrm{r}(+\mathrm{h}) \\
& =2 \times \frac{22}{7} \times \frac{7}{2}\left(\frac{7}{2}+8\right) \\
\text { Total surface Area }= & =22\left(\frac{7+16}{2}\right)=22 \times \frac{23}{2} \tag{1m}\\
& =253 \mathrm{~cm}^{2}
\end{align*}
$$

6. $\mathrm{AB} / / \mathrm{QP}$ and $\mathrm{BC} / / \mathrm{RQ}$. So $\mathrm{AB} / / \mathrm{CQ}$ is a (ABCQ)

Parallelogram. Similar
$\mathrm{BCAR}, \mathrm{ABPC}$ are parellegram,
$\therefore \mathrm{BC}=\mathrm{AQ}$ and $\mathrm{BC}=\mathrm{RA}$
A is the mid point of $Q R$
Similar B and C are mid points of PR and PQ respectively
$\therefore \mathrm{AB}=\frac{1}{2} \mathrm{PQ}, \quad \mathrm{BC}=\frac{1}{2} \mathrm{QR}$ and $\mathrm{CA}=\frac{1}{2} \mathrm{PR}$

\therefore Perimeter of ${ }_{\Delta} \mathrm{PQR}=\mathrm{PQ}+\mathrm{QR}+\mathrm{PR}$

$$
\left.\begin{array}{l}
=2 \mathrm{AB}+2 \mathrm{BC}+2 \mathrm{CA} \\
=2(\mathrm{AB}+\mathrm{BC}+\mathrm{CA}) \\
=2(\text { Perimeter or } \Delta \mathrm{ABC}) \tag{1/2m}
\end{array}\right\}
$$

\therefore The ratio of Perimeter of ${ }_{\Delta} \mathrm{PQR}$ and ${ }_{\Delta} \mathrm{ABC}=2: 1$
$\left.\begin{array}{l}\text { 7. Suppose, units digits represented by ' } x \text { ' and tens digit } \\ \text { represented by ' } y \text { ', then the number is } 10 y+x\end{array}\right\}$
If we reverse the digits then the new number would be $10 x+y$
\therefore Sum of two digit number and reverse the digits number $=165$
$\therefore 10 y+x+10 x+y=165$
$11 x+11 y=165$
$\therefore \mathrm{x}+\mathrm{y}=15$ is the required linear equation
8. $\left.\begin{array}{l}x+y+2=0 \\ x+y=-z \rightarrow(1)\end{array}\right\}$
cubins on both sides, we get $\left.(x+y)^{3}=(-2)^{3}\right\}$
$x^{3}+y^{3}+3 x y(x+y)=-z^{3}$
$\left.\begin{array}{l}\mathrm{x}^{3}+\mathrm{y}^{3}+3 \mathrm{xy}(-\mathrm{z})=-\mathrm{z}^{3} \\ (\therefore x+y=-2)\end{array}\right\}$
$\left.\begin{array}{l}\mathrm{x}^{3}+\mathrm{y}^{3}+3 \mathrm{xyz}=-\mathrm{z}^{3} \\ \therefore \mathrm{x}^{3}+\mathrm{y}^{3}+z^{3}=3 \mathrm{xyz}, \text { Hence proved }\end{array}\right\}$
9. Let

$$
\angle \mathrm{ADB}=\mathrm{x}
$$

In $\triangle \mathrm{ACD}, \mathrm{AC}=\mathrm{CD}$
$=\angle \mathrm{CAD}=\angle \mathrm{CDA}=\mathrm{x}$ and

Exteriorof $\angle \mathrm{ACB}=\angle \mathrm{CAD}+\angle \mathrm{CDA}$
$\left.\begin{array}{l}=x=x=2 x \\ \text { In } \triangle A B C, \angle B A C=\angle A C B=2 x(\therefore A B=B C)\end{array}\right\}$
$\left.\begin{array}{l}\angle \mathrm{BAD}=\angle \mathrm{BAC}+\angle \mathrm{CAD} \\ =2 \mathrm{x}+\mathrm{x}=3 \mathrm{x}\end{array}\right\}$
\therefore Theratioof $\angle \mathrm{BADand} \angle \mathrm{ADB}=3 \mathrm{x}: \mathrm{x}$
$\therefore \angle \mathrm{BAD}: \angle \mathrm{ADB}=3: 1$

SECTION - III
(1/2m)
$4 \times 8=32$
10-A In ${ }_{\Delta} \mathrm{PQR}, \mathrm{PS}+\mathrm{QR}$, since ${ }_{\Delta} \mathrm{PRS} \cong \Delta \mathrm{PRS}$ By the CP CT
$P Q=P R$ and $Q S=S R$
$2 x+3=3 y+1$ and $x=y+1$
$\Rightarrow 2 \mathrm{x}-3 \mathrm{y}=-2 \rightarrow(1)$ and $\mathrm{x}-\mathrm{y}=1 \rightarrow$
subsitutions $x=y+1$ in (1) we get
$2(y+1)=3 y=-2$
$2 y+2-3 y=-2$
$-y=-4 \Rightarrow y=4$
subsitution $y=4$ in $x=y+1$

$$
\begin{equation*}
x=4+1=5 \tag{1m}
\end{equation*}
$$

$\therefore \mathrm{PQR}=\mathrm{x}+\mathrm{y}+1=5+4+1=10$ units
$P Q=P R=2(5)+3=13$ units, $\mathrm{QS}=\mathrm{x}=5$ units
${ }_{\Delta} \mathrm{PQS}$ is right angle
by the pythogorious theorm $\mathrm{PQ}^{2}=\mathrm{QS}^{2}+\mathrm{PS}^{2}$

$$
\mathrm{PS}^{2}=\mathrm{PQ}^{2}-\mathrm{QS}^{2}
$$

$$
=(13)^{2}-(5)^{2}
$$

$$
=169-25
$$

$$
\begin{equation*}
\mathrm{PS}^{2}=144 \Rightarrow \mathrm{PS}=\sqrt{144=12} \text { units } \tag{1m}
\end{equation*}
$$

\therefore Area of ${ }_{\Delta} \mathrm{PQR}=\frac{1}{2} \times \mathrm{QR} \times \mathrm{PS}$

$$
\left.\begin{array}{l}
=\frac{1}{2} \times 10^{5} \times 12 \tag{1m}\\
=60 \text { Sq.units }
\end{array}\right\}
$$

10-B Height of a conical tent $(\mathrm{h})=9 \mathrm{~m}$
Diameter of the base $(\mathrm{d})=24 \mathrm{~m}$
radius $(\mathrm{r})=\frac{\mathrm{d}}{2}=\frac{24}{2}=12 \mathrm{~m}$
C.S.A of the cone $=\pi r l$

$$
\left.\begin{array}{l}
\text { Where } \mathrm{l}=\sqrt{\mathrm{r} 2+\mathrm{h} 2} \\
=\sqrt{12^{2}+9^{2}}=\sqrt{144+81}=\sqrt{225}=15 \mathrm{~m}
\end{array}\right\}
$$

cost of canvas per sq.m $=$ Rs. 14
Total cost of the canvas cloth $\left.=\frac{22}{7} \times 12 \times 15 \times 14\right\}$
Rs. 7920.00
11-A The rationalisms factor of $7-4 \sqrt{3}$ is $7+4 \sqrt{3}$ and the rationalism factor of $\sqrt{3}-2$ is $\sqrt{3+2}$

$$
\begin{aligned}
& \frac{1}{7-4 \sqrt{3}}+\frac{1}{\sqrt{3}-2}=\frac{1}{7-4 \sqrt{3}} \times \frac{7+4 \sqrt{3}}{7+4 \sqrt{3}}+\frac{1}{\sqrt{3}-2} \times \frac{\sqrt{3}+2}{\sqrt{3}+2} \\
& =\frac{7+4 \sqrt{3}}{(7)^{2}-\left(4 \sqrt{3)^{2}}\right.}=\frac{\sqrt{3}+2}{\left(\sqrt{3)^{2}}-(2)^{2}\right.} \\
& =\frac{7+4 \sqrt{3}}{49-48}+\frac{\sqrt{3}+2}{3-4} \\
& \frac{7+4 \sqrt{3}}{1}+\frac{\sqrt{3}+2}{(-1)} \\
& =7+4 \sqrt{3}=\sqrt{3}-2=5+3 \sqrt{3}
\end{aligned}
$$

$$
\left.\begin{array}{l}
\therefore \frac{1}{7-4 \sqrt{3}}+\frac{1}{\sqrt{3}-2}=a+b \sqrt{3}=5+3 \sqrt{3} \tag{1/2m}\\
\therefore a=5, b=3
\end{array}\right\}
$$

$$
a 3+b 3=(5) 3+(3) 3
$$

$$
\begin{equation*}
=125+27=152 \quad\} \tag{1~m}
\end{equation*}
$$

11-B Thickness of disc $=5 \mathrm{~mm}, \frac{5}{10} \mathrm{~cm}=0.5 \mathrm{~cm}$
Radius of the disc $=3.5 \mathrm{~cm}$
curved surface area of cylinder $=462 \mathrm{~cm}$
$\therefore 2 \pi \mathrm{rh}=462 \rightarrow$ (i)
Let the no. of discs $=x$
Height of the cylinder $=h$

$$
\begin{aligned}
& =\text { thickness of disc } \mathrm{X} \text { no. of discs } \\
& =0.5 \mathrm{x}
\end{aligned}
$$

$\therefore 2 \pi \mathrm{rh}=2 \times \frac{22}{7} \times 3.5 \times 0.5 x \rightarrow$ (ii)
by (i) \& (ii), $2 \times \frac{22}{7} \times 3.5^{0.5} \times 0.5 x=462$
$\therefore x=\frac{462}{2 \times 22 \times 0.5 \times 0.5}=\frac{462}{11}=42$
\therefore No. of discs $=42$
12-A Given :- ABCD Quadrilatiral, E,F,G and H are mid points of $A B, B C, C D$ and $D A$
RTP : EFGH is a parallelogram
Proof: Join $\overline{\mathrm{AC}}$ and BD, In ABC. E,F are the mid points of sides $A B$ and $B C$

$\therefore \overline{\mathrm{EF}} / / \overline{\mathrm{AC}}$ and $\mathrm{EF}=\frac{1}{2} \mathrm{AC}$ (by the mid point there on)
Also in $\mathrm{ACD}, \mathrm{HG} / / \mathrm{Ac}$ and $\mathrm{HG}=\frac{1}{2} \mathrm{AC}$
$\therefore \mathrm{EF} / / \mathrm{HG}$ and $\mathrm{EF}=\mathrm{HG}$
Now in EFGH, EF=HG and EF//HG
$\therefore \mathrm{EFGH}$ is a parallelogram
12-B Let $f(x)=f(x)=\mathrm{px}^{2}+5 \mathrm{x}+{ }^{2}$ as
$x-2$ and $x-\frac{1}{2}$ are factors of $f(x)$
then $f(2)=0$ and $f\left(\frac{1}{2}\right)=0$
$\therefore \mathrm{f}(2)=\mathrm{P}(2)^{2}+5(2)+\mathrm{r}=0$
$=4 \mathrm{p}+10+\mathrm{r}=0$
$\Rightarrow 4 \mathrm{P}+\mathrm{r}=-10 \rightarrow(1)$
$\therefore f\left(\frac{1}{2}\right)=p\left(\frac{1}{2}\right)^{2}+5\left(\frac{1}{2}\right)+r=0$
$=\frac{p}{4}+\frac{5}{2}+r=0$
$=\mathrm{p}+10+4 \mathrm{r}=0$
$=\mathrm{p}+4 \mathrm{r}=-10 \rightarrow$
From (1) and (2)

$$
\begin{aligned}
& 4 P+r=P+4 r \\
& 4 P-p=4 r-r \\
& 3 P=3 r \\
& \therefore P=r
\end{aligned}
$$

Hence proved

13-A The given equation is $2 x+3 y=12$

X	0	6
Y	4	0

(1m)
(Drawn the graph)
(i) From the graph when $y=2$ then $x=3$ Solutes is $(3,2)$
(ii) From the graph $x=-3$, then $y=6$ solutes is $(-3,6)\}$

OR

13-B Value of $\sqrt{5}$ upto 3 decimals is 2.236

PART - B
 SECTION - IV

$14(\mathrm{~B})$	$15(\mathrm{C})$	$16(\mathrm{~B})$	$17(\mathrm{~A})$	$18(\mathrm{C})$	$19(\mathrm{~A})$
$20(\mathrm{~A})$	$21(\mathrm{C})$	$22(\mathrm{D})$	$23(\mathrm{~B})$	$24(\mathrm{C})$	$25(\mathrm{~B})$
$26(\mathrm{~A})$	$27(\mathrm{C})$	$28(\mathrm{~B})$	$29(\mathrm{~B})$	$30(\mathrm{~B})$	$31(\mathrm{~B})$
$32(\mathrm{C})$	$33(\mathrm{D})$				

