SET - I SUMMATIVE ASSESSMENT - II - 2016 - 2017 MATHEMATICS (English Medium)

Clas	ss: IX(P-1)	(Max. Marks : 40)
	PART-A	
	SECTION - I	$4 \ge 2 = 8$
1.	Surface Area of Sphere = $4\pi\pi^2$	(½m)
	$4\pi\pi^2 = 616$	
	$4 \times \frac{22}{7} \times r^2 = 616$	
	$r^2 = \frac{616 \times 7}{4 \times 22} \Longrightarrow r = 7$	(½m)
	\therefore radius = 7cm	
2.	Four angles of Quadrilateral 2x, 4x, 5x, 7x, 8x $2x+4x+5x+7x = 360^{\circ}$	
	$18x = 360^{\circ}, \implies x = 20^{\circ}$	(½m)
	\therefore Angles or Quadrilatiral are 40°, 80°, 100°, 140°	(½m)
3.	S.A.S congrence rule :-	
	Two triangles are congruent if two sides and the included a	angle of one

triangle are equal to the two sides and included angle of the other triangle (1m)

4. Divide each unit into five equal parts to the right and left sides of zero on the number

	13	
line. Take 13 ports left side or the zero	if represents —	(1m)
1	¹ 5	()

(1m)

5x4 = 20

SECTION - II

5. Volume of the cylinder (V) = 308cm³ π r²h = 308

height(h) = 8cm

$$\frac{22}{7} \times r2 \times 8 = 308$$

$$r2 = \frac{308 \times 7}{22 \times 8} = \frac{49}{4}$$

$$\therefore r = \sqrt{\frac{49}{4} = \frac{7}{2}cm}$$
(1m)

$$2\pi\pi(t+h) = 2 \times \frac{22}{7} \times \frac{7}{2} \left(\frac{7}{2} + 8\right)$$

Total surface Area = $22\left(\frac{7+16}{2}\right) = 22 \times \frac{23}{2}$
= 253cm³
6. AB/QP and BC/RQ. So AB/CQ is a (ABCQ)
Parallelogram. Similar
BCAR, ABPC are parellegram,
 \therefore BC = AQ and BC = RA
A is the mid point of QR
Similar B and C are mid points of PR and
PQ respectively
 \therefore AB = $\frac{1}{2}$ PQ, BC = $\frac{1}{2}$ QR and CA = $\frac{1}{2}$ PR
 \therefore Perimeter of A PQR = PQ+QR+PR
 $= 2AB+2BC+2CA$
 $= 2(AB+BC+CA)$
 $= 2(Perimeter or $AABC$) ('sm)
 \therefore The ratio of Perimeter of A PQR and $AABC = 2:1$ ('sm)
The ratio of Perimeter of A PQR and $AABC = 2:1$ ('sm)
7. Suppose, units digits represented by 'x' and tens digit]
represented by 'y', then the number is $10y + x$ ('sm)
If we reverse the digits then the new number would be $10x+y$ ('sm)
 \therefore Sum of two digit number and reverse the digits number = 165
 \therefore $10y+x+10x+y = 165$ ('sm)
I1x+11y = 165
 \therefore x+y = 15 is the required linear equation ('sm)
8. $x+y=z \rightarrow (1)$ ('sm)
 $x^3 + y^3 + 3xy(x+y) = -z^3$ ('sm)
 $x^3 + y^3 + 3xy(x-z) = -z^3$ ('sm)$

Where
$$l = \sqrt{r2 + h2}$$

 $= \sqrt{12^2 + 9^2} = \sqrt{144 + 81} = \sqrt{225} = 15m$ (1m)
C.S.A = πrl
 $= \frac{22}{7} \times 12 \times 15 sq.m$ (1m)
cost of canvas per sq.m = Rs.14
Total cost of the canvas cloth = $\frac{22}{7} \times 12 \times 15 \times 14$
Rs. 7920.00 (1m)
The rationalisms factor of $7 - 4\sqrt{3}$ is $7 + 4\sqrt{3}$ and the rationalism factor $\sqrt{3}$

11-A The rationalisms factor of $7 - 4\sqrt{3}$ is $7 + 4\sqrt{3}$ and the rationalism factor of $\sqrt{3} - 2$ is $\sqrt{3+2}$ (1m)

$$\frac{1}{7-4\sqrt{3}} + \frac{1}{\sqrt{3}-2} = \frac{1}{7-4\sqrt{3}} \times \frac{7+4\sqrt{3}}{7+4\sqrt{3}} + \frac{1}{\sqrt{3}-2} \times \frac{\sqrt{3}+2}{\sqrt{3}+2}$$

$$= \frac{7+4\sqrt{3}}{(7)^2 - (4\sqrt{3})^2} = \frac{\sqrt{3}+2}{(\sqrt{3})^2 - (2)^2}$$

$$= \frac{7+4\sqrt{3}}{49-48} + \frac{\sqrt{3}+2}{3-4}$$

$$\frac{7+4\sqrt{3}}{1} + \frac{\sqrt{3}+2}{(-1)}$$

$$= 7+4\sqrt{3} = \sqrt{3}-2 = 5+3\sqrt{3}$$
(1¹/₂m)

$$\therefore \frac{1}{7 - 4\sqrt{3}} + \frac{1}{\sqrt{3} - 2} = a + b\sqrt{3} = 5 + 3\sqrt{3}$$

$$\therefore a = 5, b = 3$$

$$a3 + b3 = (5)3 + (3)3$$

$$= 125 + 27 = 152$$

$$(1m)$$

11-B Thickness of disc = 5mm, $\frac{5}{10}$ cm = 0.5cm Radius of the disc = 3.5cm curved surface area of cylinder = 462cm ∴ 2πrh = 462 → (i) Let the no. of discs = x Height of the cylinder = h = thickness of disc X no. of discs = 0.5x ∴ 2πrh = 2× $\frac{22}{7}$ ×3.5×0.5x → (ii)

by (i) & (ii) ,
$$2 \times \frac{22}{7} \times 3.5^{0.5} \times 0.5x = 462$$

∴ $x = \frac{462}{2 \times 22 \times 0.5 \times 0.5} = \frac{462}{11} = 42$
∴ No. of discs = 42

12-A Given :- ABCD Quadrilatiral, E,F,G and H are mid points of AB,BC,CD and DA RTP : EFGH is a parallelogram Proof: Join \overline{AC} and BD, In ABC. E,F are the mid points of sides AB and BC

$$\therefore \overline{\text{EF}} / / \overline{\text{AC}} \text{ and } \text{EF} = \frac{1}{2} \text{AC} \text{ (by the mid point there on)}$$

Also in ACD, HG//Ac and HG = $\frac{1}{2}$ AC

 \therefore EF//HG and EF = HG Now in EFGH, EF=HG and EF//HG \therefore EFGH is a parallelogram

12-B Let
$$f(x) = f(x) = px^2 + 5x + as$$

x - 2 and x -
$$\frac{1}{2}$$
 are factors of f(x)
then f(2) = 0 and f $\left(\frac{1}{2}\right)$ = 0
∴ f(2) = P(2)² + 5(2) + r = 0
= 4p + 10 + r = 0
⇒ 4P + r = -10 → (1)

$$\therefore f\left(\frac{1}{2}\right) = p\left(\frac{1}{2}\right)^2 + 5\left(\frac{1}{2}\right) + r = 0$$
$$= \frac{p}{4} + \frac{5}{2} + r = 0$$
$$= p + 10 + 4r = 0$$
$$= p + 4r = -10 \quad \rightarrow (2)$$
From (1) and (2)
$$4P + r = P + 4r$$

$$4P + r = P + 4r$$

$$4P - p = 4r - r$$

$$3P = 3r$$

$$\therefore P = r$$
Hence proved

13-A The given equation is 2x+3y = 12

OR

13-B Value of $\sqrt{5}$ upto 3 decimals is 2.236

PART - B	8
SECTION -1	IV

14 (B)	15(C)	16(B)	17(A)	18(C)	19(A)
20(A)	21(C)	22(D)	23(B)	24(C)	25(B)
26(A)	27(C)	28(B)	29(B)	30(B)	31(B)
32(C)	33(D)				